3.6.73 \(\int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\) [573]

3.6.73.1 Optimal result
3.6.73.2 Mathematica [C] (verified)
3.6.73.3 Rubi [A] (verified)
3.6.73.4 Maple [A] (verified)
3.6.73.5 Fricas [B] (verification not implemented)
3.6.73.6 Sympy [F]
3.6.73.7 Maxima [A] (verification not implemented)
3.6.73.8 Giac [F(-1)]
3.6.73.9 Mupad [B] (verification not implemented)

3.6.73.1 Optimal result

Integrand size = 23, antiderivative size = 245 \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a+b) \left (a^2-4 a b+b^2\right ) \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2} d}-\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {(a-b) \left (a^2+4 a b+b^2\right ) \log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )}{2 \sqrt {2} d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}} \]

output
-1/2*(a+b)*(a^2-4*a*b+b^2)*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1 
/2*(a+b)*(a^2-4*a*b+b^2)*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))/d*2^(1/2)-1/4* 
(a-b)*(a^2+4*a*b+b^2)*ln(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1/2)+ 
1/4*(a-b)*(a^2+4*a*b+b^2)*ln(1+2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/d*2^(1 
/2)+2*b*(a^2+b^2)*tan(d*x+c)^(1/2)/d-2*a^2*(a+b*tan(d*x+c))/d/tan(d*x+c)^( 
1/2)
 
3.6.73.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 3 in optimal.

Time = 2.03 (sec) , antiderivative size = 192, normalized size of antiderivative = 0.78 \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {-32 a b^2-8 a \left (a^2-3 b^2\right ) \operatorname {Hypergeometric2F1}\left (-\frac {1}{4},1,\frac {3}{4},-\tan ^2(c+d x)\right )+\sqrt {2} b \left (-3 a^2+b^2\right ) \left (2 \arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )-2 \arctan \left (1+\sqrt {2} \sqrt {\tan (c+d x)}\right )+\log \left (1-\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )-\log \left (1+\sqrt {2} \sqrt {\tan (c+d x)}+\tan (c+d x)\right )\right ) \sqrt {\tan (c+d x)}+8 b^2 (a+b \tan (c+d x))}{4 d \sqrt {\tan (c+d x)}} \]

input
Integrate[(a + b*Tan[c + d*x])^3/Tan[c + d*x]^(3/2),x]
 
output
(-32*a*b^2 - 8*a*(a^2 - 3*b^2)*Hypergeometric2F1[-1/4, 1, 3/4, -Tan[c + d* 
x]^2] + Sqrt[2]*b*(-3*a^2 + b^2)*(2*ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d*x]]] 
 - 2*ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]] + Log[1 - Sqrt[2]*Sqrt[Tan[c + 
 d*x]] + Tan[c + d*x]] - Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x] 
])*Sqrt[Tan[c + d*x]] + 8*b^2*(a + b*Tan[c + d*x]))/(4*d*Sqrt[Tan[c + d*x] 
])
 
3.6.73.3 Rubi [A] (verified)

Time = 0.68 (sec) , antiderivative size = 219, normalized size of antiderivative = 0.89, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.652, Rules used = {3042, 4048, 27, 3042, 4113, 3042, 4017, 1482, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {(a+b \tan (c+d x))^3}{\tan (c+d x)^{3/2}}dx\)

\(\Big \downarrow \) 4048

\(\displaystyle 2 \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \tan (c+d x) a+b \left (a^2+b^2\right ) \tan ^2(c+d x)}{2 \sqrt {\tan (c+d x)}}dx-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \tan (c+d x) a+b \left (a^2+b^2\right ) \tan ^2(c+d x)}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {4 b a^2-\left (a^2-3 b^2\right ) \tan (c+d x) a+b \left (a^2+b^2\right ) \tan (c+d x)^2}{\sqrt {\tan (c+d x)}}dx-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4113

\(\displaystyle \int \frac {b \left (3 a^2-b^2\right )-a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {b \left (3 a^2-b^2\right )-a \left (a^2-3 b^2\right ) \tan (c+d x)}{\sqrt {\tan (c+d x)}}dx+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 4017

\(\displaystyle \frac {2 \int \frac {b \left (3 a^2-b^2\right )-a \left (a^2-3 b^2\right ) \tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1482

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \int \frac {\tan (c+d x)+1}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1476

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {1}{2} \int \frac {1}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}+\frac {1}{2} \int \frac {1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1082

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}-\frac {\int \frac {1}{-\tan (c+d x)-1}d\left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 217

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \int \frac {1-\tan (c+d x)}{\tan ^2(c+d x)+1}d\sqrt {\tan (c+d x)}-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1479

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (-\frac {\int -\frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 25

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\int \frac {\sqrt {2}-2 \sqrt {\tan (c+d x)}}{\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}}{2 \sqrt {2}}+\frac {1}{2} \int \frac {\sqrt {2} \sqrt {\tan (c+d x)}+1}{\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1}d\sqrt {\tan (c+d x)}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

\(\Big \downarrow \) 1103

\(\displaystyle \frac {2 \left (\frac {1}{2} (a-b) \left (a^2+4 a b+b^2\right ) \left (\frac {\log \left (\tan (c+d x)+\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}-\frac {\log \left (\tan (c+d x)-\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{2 \sqrt {2}}\right )-\frac {1}{2} (a+b) \left (a^2-4 a b+b^2\right ) \left (\frac {\arctan \left (\sqrt {2} \sqrt {\tan (c+d x)}+1\right )}{\sqrt {2}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {\tan (c+d x)}\right )}{\sqrt {2}}\right )\right )}{d}+\frac {2 b \left (a^2+b^2\right ) \sqrt {\tan (c+d x)}}{d}-\frac {2 a^2 (a+b \tan (c+d x))}{d \sqrt {\tan (c+d x)}}\)

input
Int[(a + b*Tan[c + d*x])^3/Tan[c + d*x]^(3/2),x]
 
output
(2*(-1/2*((a + b)*(a^2 - 4*a*b + b^2)*(-(ArcTan[1 - Sqrt[2]*Sqrt[Tan[c + d 
*x]]]/Sqrt[2]) + ArcTan[1 + Sqrt[2]*Sqrt[Tan[c + d*x]]]/Sqrt[2])) + ((a - 
b)*(a^2 + 4*a*b + b^2)*(-1/2*Log[1 - Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + 
d*x]]/Sqrt[2] + Log[1 + Sqrt[2]*Sqrt[Tan[c + d*x]] + Tan[c + d*x]]/(2*Sqrt 
[2])))/2))/d + (2*b*(a^2 + b^2)*Sqrt[Tan[c + d*x]])/d - (2*a^2*(a + b*Tan[ 
c + d*x]))/(d*Sqrt[Tan[c + d*x]])
 

3.6.73.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 1482
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
a*c, 2]}, Simp[(d*q + a*e)/(2*a*c)   Int[(q + c*x^2)/(a + c*x^4), x], x] + 
Simp[(d*q - a*e)/(2*a*c)   Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ[{a 
, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[(- 
a)*c]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4017
Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_ 
)]], x_Symbol] :> Simp[2/f   Subst[Int[(b*c + d*x^2)/(b^2 + x^4), x], x, Sq 
rt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2, 0] & 
& NeQ[c^2 + d^2, 0]
 

rule 4048
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*c - a*d)^2*(a + b*Tan[e + f*x])^(m 
 - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 + d^2))), x] - Simp[1 
/(d*(n + 1)*(c^2 + d^2))   Int[(a + b*Tan[e + f*x])^(m - 3)*(c + d*Tan[e + 
f*x])^(n + 1)*Simp[a^2*d*(b*d*(m - 2) - a*c*(n + 1)) + b*(b*c - 2*a*d)*(b*c 
*(m - 2) + a*d*(n + 1)) - d*(n + 1)*(3*a^2*b*c - b^3*c - a^3*d + 3*a*b^2*d) 
*Tan[e + f*x] - b*(a*d*(2*b*c - a*d)*(m + n - 1) - b^2*(c^2*(m - 2) - d^2*( 
n + 1)))*Tan[e + f*x]^2, x], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 2] && LtQ 
[n, -1] && IntegerQ[2*m]
 

rule 4113
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) 
+ (f_.)*(x_)] + (C_.)*tan[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[C*((a + 
 b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e + f*x])^m*Si 
mp[A - C + B*Tan[e + f*x], x], x] /; FreeQ[{a, b, e, f, A, B, C, m}, x] && 
NeQ[A*b^2 - a*b*B + a^2*C, 0] &&  !LeQ[m, -1]
 
3.6.73.4 Maple [A] (verified)

Time = 0.06 (sec) , antiderivative size = 226, normalized size of antiderivative = 0.92

method result size
derivativedivides \(\frac {2 b^{3} \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\left (3 a^{2} b -b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{3}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(226\)
default \(\frac {2 b^{3} \left (\sqrt {\tan }\left (d x +c \right )\right )+\frac {\left (3 a^{2} b -b^{3}\right ) \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}+\frac {\left (-a^{3}+3 a \,b^{2}\right ) \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}-\frac {2 a^{3}}{\sqrt {\tan \left (d x +c \right )}}}{d}\) \(226\)
parts \(\frac {a^{3} \left (-\frac {2}{\sqrt {\tan \left (d x +c \right )}}-\frac {\sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {b^{3} \left (2 \left (\sqrt {\tan }\left (d x +c \right )\right )-\frac {\sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4}\right )}{d}+\frac {3 a \,b^{2} \sqrt {2}\, \left (\ln \left (\frac {1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}+\frac {3 a^{2} b \sqrt {2}\, \left (\ln \left (\frac {1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}{1-\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )+\tan \left (d x +c \right )}\right )+2 \arctan \left (1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )+2 \arctan \left (-1+\sqrt {2}\, \left (\sqrt {\tan }\left (d x +c \right )\right )\right )\right )}{4 d}\) \(392\)

input
int((a+b*tan(d*x+c))^3/tan(d*x+c)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/d*(2*b^3*tan(d*x+c)^(1/2)+1/4*(3*a^2*b-b^3)*2^(1/2)*(ln((1+2^(1/2)*tan(d 
*x+c)^(1/2)+tan(d*x+c))/(1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan( 
1+2^(1/2)*tan(d*x+c)^(1/2))+2*arctan(-1+2^(1/2)*tan(d*x+c)^(1/2)))+1/4*(-a 
^3+3*a*b^2)*2^(1/2)*(ln((1-2^(1/2)*tan(d*x+c)^(1/2)+tan(d*x+c))/(1+2^(1/2) 
*tan(d*x+c)^(1/2)+tan(d*x+c)))+2*arctan(1+2^(1/2)*tan(d*x+c)^(1/2))+2*arct 
an(-1+2^(1/2)*tan(d*x+c)^(1/2)))-2*a^3/tan(d*x+c)^(1/2))
 
3.6.73.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 1398 vs. \(2 (213) = 426\).

Time = 0.29 (sec) , antiderivative size = 1398, normalized size of antiderivative = 5.71 \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(3/2),x, algorithm="fricas")
 
output
1/2*(d*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^ 
2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^ 
2)*log(((a^3 - 3*a*b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452* 
a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6*b^3 + 
 60*a^4*b^5 - 18*a^2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + 
d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 
30*a^2*b^10 + b^12)/d^4))/d^2) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4 
*b^8 + 12*a^2*b^10 - b^12)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*sqrt((6*a^ 
5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 
 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2)*log(-((a^3 - 3 
*a*b^2)*d^3*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^ 
4*b^8 - 30*a^2*b^10 + b^12)/d^4) - (3*a^8*b - 46*a^6*b^3 + 60*a^4*b^5 - 18 
*a^2*b^7 + b^9)*d)*sqrt((6*a^5*b - 20*a^3*b^3 + 6*a*b^5 + d^2*sqrt(-(a^12 
- 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^10 + b^ 
12)/d^4))/d^2) - (a^12 - 12*a^10*b^2 - 27*a^8*b^4 + 27*a^4*b^8 + 12*a^2*b^ 
10 - b^12)*sqrt(tan(d*x + c)))*tan(d*x + c) - d*sqrt((6*a^5*b - 20*a^3*b^3 
 + 6*a*b^5 - d^2*sqrt(-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 2 
55*a^4*b^8 - 30*a^2*b^10 + b^12)/d^4))/d^2)*log(((a^3 - 3*a*b^2)*d^3*sqrt( 
-(a^12 - 30*a^10*b^2 + 255*a^8*b^4 - 452*a^6*b^6 + 255*a^4*b^8 - 30*a^2*b^ 
10 + b^12)/d^4) + (3*a^8*b - 46*a^6*b^3 + 60*a^4*b^5 - 18*a^2*b^7 + b^9...
 
3.6.73.6 Sympy [F]

\[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\int \frac {\left (a + b \tan {\left (c + d x \right )}\right )^{3}}{\tan ^{\frac {3}{2}}{\left (c + d x \right )}}\, dx \]

input
integrate((a+b*tan(d*x+c))**3/tan(d*x+c)**(3/2),x)
 
output
Integral((a + b*tan(c + d*x))**3/tan(c + d*x)**(3/2), x)
 
3.6.73.7 Maxima [A] (verification not implemented)

Time = 0.29 (sec) , antiderivative size = 214, normalized size of antiderivative = 0.87 \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\frac {8 \, b^{3} \sqrt {\tan \left (d x + c\right )} - 2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} + 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) - 2 \, \sqrt {2} {\left (a^{3} - 3 \, a^{2} b - 3 \, a b^{2} + b^{3}\right )} \arctan \left (-\frac {1}{2} \, \sqrt {2} {\left (\sqrt {2} - 2 \, \sqrt {\tan \left (d x + c\right )}\right )}\right ) + \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \sqrt {2} {\left (a^{3} + 3 \, a^{2} b - 3 \, a b^{2} - b^{3}\right )} \log \left (-\sqrt {2} \sqrt {\tan \left (d x + c\right )} + \tan \left (d x + c\right ) + 1\right ) - \frac {8 \, a^{3}}{\sqrt {\tan \left (d x + c\right )}}}{4 \, d} \]

input
integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(3/2),x, algorithm="maxima")
 
output
1/4*(8*b^3*sqrt(tan(d*x + c)) - 2*sqrt(2)*(a^3 - 3*a^2*b - 3*a*b^2 + b^3)* 
arctan(1/2*sqrt(2)*(sqrt(2) + 2*sqrt(tan(d*x + c)))) - 2*sqrt(2)*(a^3 - 3* 
a^2*b - 3*a*b^2 + b^3)*arctan(-1/2*sqrt(2)*(sqrt(2) - 2*sqrt(tan(d*x + c)) 
)) + sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(sqrt(2)*sqrt(tan(d*x + c) 
) + tan(d*x + c) + 1) - sqrt(2)*(a^3 + 3*a^2*b - 3*a*b^2 - b^3)*log(-sqrt( 
2)*sqrt(tan(d*x + c)) + tan(d*x + c) + 1) - 8*a^3/sqrt(tan(d*x + c)))/d
 
3.6.73.8 Giac [F(-1)]

Timed out. \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Timed out} \]

input
integrate((a+b*tan(d*x+c))^3/tan(d*x+c)^(3/2),x, algorithm="giac")
 
output
Timed out
 
3.6.73.9 Mupad [B] (verification not implemented)

Time = 5.83 (sec) , antiderivative size = 1767, normalized size of antiderivative = 7.21 \[ \int \frac {(a+b \tan (c+d x))^3}{\tan ^{\frac {3}{2}}(c+d x)} \, dx=\text {Too large to display} \]

input
int((a + b*tan(c + d*x))^3/tan(c + d*x)^(3/2),x)
 
output
(2*b^3*tan(c + d*x)^(1/2))/d - atan((a^6*d^3*tan(c + d*x)^(1/2)*((a^6*1i)/ 
(4*d^2) - (b^6*1i)/(4*d^2) + (3*a*b^5)/(2*d^2) + (3*a^5*b)/(2*d^2) + (a^2* 
b^4*15i)/(4*d^2) - (5*a^3*b^3)/d^2 - (a^4*b^2*15i)/(4*d^2))^(1/2)*32i)/(16 
*a^9*d^2 - b^9*d^2*16i + 48*a*b^8*d^2 - a^8*b*d^2*48i + a^2*b^7*d^2*288i - 
 736*a^3*b^6*d^2 - a^4*b^5*d^2*960i + 960*a^5*b^4*d^2 + a^6*b^3*d^2*736i - 
 288*a^7*b^2*d^2) - (b^6*d^3*tan(c + d*x)^(1/2)*((a^6*1i)/(4*d^2) - (b^6*1 
i)/(4*d^2) + (3*a*b^5)/(2*d^2) + (3*a^5*b)/(2*d^2) + (a^2*b^4*15i)/(4*d^2) 
 - (5*a^3*b^3)/d^2 - (a^4*b^2*15i)/(4*d^2))^(1/2)*32i)/(16*a^9*d^2 - b^9*d 
^2*16i + 48*a*b^8*d^2 - a^8*b*d^2*48i + a^2*b^7*d^2*288i - 736*a^3*b^6*d^2 
 - a^4*b^5*d^2*960i + 960*a^5*b^4*d^2 + a^6*b^3*d^2*736i - 288*a^7*b^2*d^2 
) + (a^2*b^4*d^3*tan(c + d*x)^(1/2)*((a^6*1i)/(4*d^2) - (b^6*1i)/(4*d^2) + 
 (3*a*b^5)/(2*d^2) + (3*a^5*b)/(2*d^2) + (a^2*b^4*15i)/(4*d^2) - (5*a^3*b^ 
3)/d^2 - (a^4*b^2*15i)/(4*d^2))^(1/2)*480i)/(16*a^9*d^2 - b^9*d^2*16i + 48 
*a*b^8*d^2 - a^8*b*d^2*48i + a^2*b^7*d^2*288i - 736*a^3*b^6*d^2 - a^4*b^5* 
d^2*960i + 960*a^5*b^4*d^2 + a^6*b^3*d^2*736i - 288*a^7*b^2*d^2) - (a^4*b^ 
2*d^3*tan(c + d*x)^(1/2)*((a^6*1i)/(4*d^2) - (b^6*1i)/(4*d^2) + (3*a*b^5)/ 
(2*d^2) + (3*a^5*b)/(2*d^2) + (a^2*b^4*15i)/(4*d^2) - (5*a^3*b^3)/d^2 - (a 
^4*b^2*15i)/(4*d^2))^(1/2)*480i)/(16*a^9*d^2 - b^9*d^2*16i + 48*a*b^8*d^2 
- a^8*b*d^2*48i + a^2*b^7*d^2*288i - 736*a^3*b^6*d^2 - a^4*b^5*d^2*960i + 
960*a^5*b^4*d^2 + a^6*b^3*d^2*736i - 288*a^7*b^2*d^2))*((6*a*b^5 + 6*a^...